Step of Proof: zero_ann_b
12,41
postcript
pdf
Inference at
*
I
of proof for Lemma
zero
ann
b
:
a
,
b
:
. (
((
a
*
b
) = 0))
((
(
a
= 0)) & (
(
b
= 0)))
latex
by ((((((GenUnivCD)
CollapseTHENM (D 0))
)
CollapseTHENM (D (-2)))
)
CollapseTHENA (
C
(Auto_aux (first_nat 1:n) ((first_nat 1:n),(first_nat 3:n)) (first_tok :t) inil_term)))
latex
C
1
:
C1:
1.
a
:
C1:
2.
b
:
C1:
3.
a
= 0
C1:
(
a
*
b
) = 0
C
2
:
C2:
1.
a
:
C2:
2.
b
:
C2:
3.
b
= 0
C2:
(
a
*
b
) = 0
C
.
Definitions
,
t
T
,
P
&
Q
,
A
,
P
Q
,
x
:
A
.
B
(
x
)
,
False
Lemmas
not
wf
origin